
Reasoning Tasks and Mediation on
Choreography and Orchestration in WSMO

Michael Stollberg

University of Innsbruck, Digital Enterprise Research Institute, Technikerstrasse 21a,
6020 Innsbruck, Austria

michael.stollberg@deri.org

http://www.deri.org

Abstract. The Web Service Modelling Ontology (WSMO) semantically
describes the core elements of Semantic Web Services, aiming at a frame-
work for unambiguous formal descriptions on which inference mecha-
nisms shall enable automated discovery, composition, execution and in-
vocation of Web Services. Choreography and Orchestration are defined
as sub-classes of service interface for describing how the functionality of
a Web Service can be consumed and how it is achieved by aggregating
other Web Services. Therefore, a basic model for formally describing the
dynamics of service interface descriptions has been defined. This paper
discusses the usability of the mentioned model by identifying the main
reasoning tasks for choreography and orchestration descriptions as well
as the requirements on mediation facilities in order to handle possible
occurring mismatches in WSMO service interfaces.

1 Introduction

Realizing the promise of Semantic Web Services requires usage of ontologies
as the underlying data model throughout the complete service usage process.
This ranges from ontology keywords referenced in non-functional properties,
over capability and interface definitions of services that are used in the pre-
execution phase, up to the interchange of ontology data during service execution.
In consequence, WSMO defines ontologies as a top-level element for Semantic
Web Services; all other WSMO elements apply ontologies for defining the data
aspects.

The concept of service interfaces in WSMO is concerned with service usage
for consuming the functionality of a service, as well as interaction with other
services in order to achieve the service functionality. In relation to the capability
as the functional description of a service, service interfaces are understood as
decompositions of a service capability that describe how the service functionality
can be consumed and how it is achieved. Although being very different from a
conceptual point of view, the notions of choreography and orchestration are
defined as sub-classes of service interfaces in WSMO; the reason is that WSMO
defines a formal model that can serve as a common basis for describing the
dynamics of Web Service usage and Web Service interactions, respectively.



2 Michael Stollberg

The main question arising with respect to the usability of the WSMO ap-
proach and model for service interface descriptions is the identification of the
essential reasoning tasks for enabling semantically driven techniques for using
and handling Web Services automatically. Associated to this, the requirements
for appropriate mediation facilities that allow resolution of possibly occurring
mismatches within service interface definitions abound. This paper addresses
these two aspects. Therefore, we recall the basic formal model for describing ser-
vice interfaces in WSMO, and then address the reasoning tasks and requirements
on mediation facilities for choreography and orchestration.

The paper is structured as follows: Section 2 resumes the basic model for
service interfaces defined in WSMO; Section 3 addresses the support provided
for choreography descriptions and identifies the essential reasoning tasks and
requirements for appropriate mediation facilities; Section 4 addresses the same
issues within orchestration; Section 5 discusses related work, and Section 6 con-
cludes the paper.

2 Basic Model for Service Interface Definitions

The following summarizes the common basic model for service interface descrip-
tions in WSMO, as outlined in [13]. The reason for defining a common model for
service interfaces is that the following requirements are the same for all service
interfaces:

– to provide representation means for the dynamics of the information in-
terchange that takes place when a service is used and interacts with other
services

– to support ontologies as the underlying data model along with an appropriate
communication technology for information interchange

– to rely on a sound formal model that defines the semantics of service interface
specifications in order to allow operations on them.

The formal model for WSMO service interface descriptions relies on Abstract
State Machines (ASM for short). ASMs are a high-level, abstract technique for
validating complex systems or programs and provide a highly expressive, flexi-
ble, and formally sound means for representing dynamics. The core principles of
ASMs are that they are state-based, they represent a state by a formal algebra,
and they model state changes by guarded transition rules that change the values
of functions and relations defined by the signature of the algebra [3]. The rea-
son for choosing ASMs as the underlying formalism for defining service interface
definitions in WSMO is the generality and expressiveness provided on the one
hand, and, on the other, they allow to overcome the ”Frame Problem” [15]: this
refers to that a state in a dynamic system is defined by the current informa-
tion existing at a certain point in time; at a state change, the changes on all
information items have to be defined. In contrast to other formalisms, guarded
transitions in an ASM fire in parallel such that each condition of the transitions
is checked over the current state. Thus, the ASM model overcomes the frame



Title Suppressed Due to Excessive Length 3

problem as only information that is changed at a state transition needs to be
defined within guarded transitions [7].

The ASM-based model for service interfaces defined in WSMO provides the
formal basis for specifying ontology data interchange within service interfaces.
In accordance to the ASM framework, this model consists of three notions that
we formalize in the following definition:

– a Vocabulary Ω that defines the information space of a service interface
on basis of ontologies. This is defined as the ontological schema of the in-
formation interchanged in a service interface by denoting the used concepts,
relations, and functions of ontologies. The communicative usage of this on-
tological schema information is indicated by sub-information spaces for on-
tologies instances: Ωin denotes the vocabulary of information received by
the service interface; Ωout the vocabulary of information that is provided
by the service interface; Ωshared denotes the vocabulary of information both
received and provided by the service interface; Ωstatic defines the vocabu-
lary of ontology notions that cannot be changed by the service interface, and
Ωcontrolled denotes those that can only be changed by the service.

– States ω(Ω) that denote a status of the information space within the dy-
namics of a service interface that is defined by the attribute values of the on-
tology instances of Ω. A state denotes a stable status within the dynamics of
a service interface that is existent as long as attribute values of instances are
not changed, thus includes all communicative activities that do not change
information in ω(Ω).

– Guarded Transitions T that specify the dynamics of a service interface.
The general structure of T is: if condition(ω) then update, whereby the con-
dition reflects changes in Ω, while the update part defines the changes on
information performed in the transition to the subsequent state ω’. At a
state change from ω to ω’, all T are executed whose condition is satisfied.

In principle, we understand this model to define an evolving ontology on
the information space that progresses during service usage. Thereby, Ω contains
the concepts, relations, functions, and axioms as ontology schema on basis of
a domain ontology. A state ω(Ω) is stable status of the information space of a
service interface, defined by the concrete attribute values of ontology instances;
the communicative activities to be performed on instance data are denoted by
the sub-information spaces of Ω. The set of guarded transitions T defines state
changes with regard to the evolution of the information space throughout the
usage of the service interface. This provides a formal model for ontology data
interchange in service interfaces that satisfies the requirements stated above.

This model allows to describe the dynamics of service interfaces with respect
to the ontology data changed by and interchanged during service consumption
or service interaction. The differences in choreography and orchestration descrip-
tions are represented by different Guarded Transitions: while the IF-part refers
to a state in both choreography and orchestration, the THEN-part in choreogra-
phy defines communicative activities to be performed, while the THEN-part in



4 Michael Stollberg

an orchestration denotes communicative activities in terms of an operation op.
The operation dictates the target Web Service Sx to be used and the required
updates over the information space. As for choreography, the updates are defined
in terms of the changes in the attribute values of some (or all) instance data.

3 Reasoning and Mediation on Choreography Definitions

The W3C Web Service Glossary defines choreography to be concerned with ”the
interactions of services with their users. Any user of a Web service, automated
or otherwise, is a client of that service. These users may, in turn, be other Web
Services, applications or human beings.” [8].

With regard to this definition, the following explains how aspects related
to choreography can be described within the formal model for WSMO service
interface definitions, and defines service compatibility determination as the main
reasoning task on choreography definitions along with the emerging needs for
mediation on choreography definitions.

3.1 Requirements for Choreography Descriptions

With respect to the W3C Glossary definition we identify two aspects that are
related to choreography:

1. the interface description of a Web Service that describes the interaction
behavior of the Web Service for consuming its functionality. We denote this
as the choreography interface of a Web Service, indicated as ci(S).

2. the interaction protocol that describes, from a global perspective, the com-
municative interaction of several Web Services and clients via their respective
choreography interfaces. With respect to the W3C definition as well as to ter-
minology conventions within Web Services research (see [12]), we denote this
as a choreography, indicated as C(S1, ...Sn) = interaction(ci(S1), ..., ci(Sn)).

In compliance to [2], the aspects that need to be described within choreogra-
phy interface are the external visible behavior defined as those aspects of the busi-
ness process of a Web Service where interaction with the client is required, and
the communication protocol expected by the service so that a client can consume
its functionality, as well as the semantics of the information to be interchanged.
A choreography needs to define the business process of the interaction from a
global perspective along with the communication protocol between choreography
participants and the semantics of the information to be interchanged between
choreography participants.

We can use the model for WSMO service interfaces for describing both,
choreography interfaces of individual Web Services as well as choreographies as
interaction models. For the former, we define the vocabulary Ωci(S) as the onto-
logical information space of the choreography interface of a Web Service, and the
guarded transitions Tci(S) for defining the communication protocol expected for



Title Suppressed Due to Excessive Length 5

client-service interaction along with the ontological information interchanged;
the external visible behavior is implicitly defined by the states ω0(Ωci(S)) -
ωn(Ωci(S)) that can be reached by respective Tci(S). For describing a choreogra-
phy, we describe the interaction from a global perspective: thereby, ΩC(S1,...,Sn)

defines the ontological information space used for interaction, the guarded tran-
sitions TC(S1,...,Sn) define the communication protocol and semantics of the in-
formation interchanged, and the states of the choreography business process are
defined implicitly as above.

Thus, the model for WSMO service interface definitions seems to be appro-
priate for formally describing aspects concerned with choreography. The WSMO
model does not restrict this to a specific technology, but leaves the choice open to
implementations. However, the aim of this paper is not to present mappings into
executable technologies, but to identify the essential reasoning tasks on basis of
formal choreography descriptions.

3.2 Service Compatibility as Reasoning Task

We understand the determination of existence of a valid choreography for the in-
teraction of several Web Services as the main reasoning task on choreography de-
scriptions. This means, given ci(S1), . . . , ci(Sn) for Web Services S1, . . . , Sn that
shall interoperate, whereby each ci(S) is considered as static (i.e. not changeable
with respect to the Web Service functionality), we have to determine whether
there exists a choreography C((S1), . . . , (Sn)) = interaction(ci(S1), ..., ci(Sn)) as
a valid interaction protocol for the Web Services. On the basis of previous work
on this issue by Martens [10], we refer to such a choreography to be existent if
service compatibility holds for ci(S1), ..., ci(Sn), denoted by SC((S1), . . . , (Sn))
in the following.

To determine this, we need to proof that there exists a C((S1), . . . , (Sn))
for which the following holds: (1) the service interface descriptions need to use
homogeneous ontologies, (2) the information to be interchanged (i.e. the content
of communicative acts) needs to be compatible; we refer to this as information
compatibility, denoted as SCinfo(C), and (3) the communication protocol of the
choreography has to be sound, meaning that it has at least one start state and
can reach a termination state without any additional input; we refer to this as
communication compatibility, denoted as SCcomm(C).

While the first aspects refers to determination of homogeneous information
spaces relevant for all WSMO element descriptions, we can determine informa-
tion compatibility on basis of vocabulary definitions in choreography interfaces.
Considering this for two Web Services, information compatibility is given if all
information required as input by S1 is output of S2 and vice versa. The fol-
lowing gives the formal definition for information compatibility along with a
generalization this for several Web Services:

SCinfo((S1), (S2))← (S1(Ωin ∪Ωshared) = (1)
S2(Ωout ∪Ωshared)) ∧ (S1(Ωout ∪Ωshared) = S2(Ωin ∪Ωshared)). (2)



6 Michael Stollberg

SCinfo(C)← ∀Sx ∈ C ∃Sy ∈ C.(SCinfo((Sx), (Sy))). (3)

For communication compatibility, we have to determine the existence of a
choreography as a sound interaction model for the choreography interfaces of
the Web Services that are ought to interact. Considering this for two Web Ser-
vices, we have to proof three properties on C((S1), . . . , (Sn)) with respect to
the definition of soundness: the first one is that there is an initial state ∅ for
C((S1), (S2)) that has compatible guarded transitions in ci(S1), ci(S2). The sec-
ond one is compatibility of guarded transitions in each state ωx(C((S1), (S2))).
This is given if for the IF-part of all guarded transitions in a state ωx(ci(S1))
holds that there exists a guarded transition in the equivalent state ωx(ci(S2))
whose THEN-part fulfils the condition, or vice versa. This means that if the
IF-part of T (ωx(ci(S1))) defines a condition on a concept C ∈ Ωin∪shared(S1),
then the THEN-part of some T (ωx(ci(S2))) needs to define a communicative
action on a concept C′ ∈ Ωout∪shared(S2), and vice versa. The third property is
existence of a proper termination state for C((S1), (S2)), such that for some state
ωx(C((S1), (S2))) there does not exist any guarded transition in the equivalent
states ωx(ci(S1)), neither in ωx(ci(S2)). Generalizing this for choreographies with
multiple participating Web Services, we define communication compatibility as
follows:

SCcomm(C)← ∀Sx ∈ C ∃Sy ∈ C.(∅(Sx,Sy) ∧GTω1−ωm(Sx,Sy) ∧ ωt(Sx,Sy)). (4)
∅(S1,S2)← ∅(S1) = ∅(S2) ∧GT∅((S1), (S2)). (5)

GTω(S1,S2)← a ∈ IF(Tω(S1)) ∧ b ∈ T HEN (Tω(S2)) ∧ SCinfo(a, b). (6)
ωt(S1,S2)← ¬∃T (ωt) ∧ ωt(S1) = ωt(S2). (7)

On this basis, we can determine existence of a valid choreography for Web Ser-
vices that shall interact if service compatibility holds on the choreography inter-
faces of the Web Services: valid(C((S1), . . . , (Sn)))← SCinfo(ci(S1), . . . , ci(Sn))∧
SCcomm(ci(S1), . . . , ci(Sn)).

3.3 Mediation Requirements

The above examinations reveal the requirements for mediation on choreography
descriptions: if service compatibility is not given for Web Services that shall inter-
act, then a WW Mediator has to establish this between the given choreography
interfaces. Therefore, we identify three aspects of mediation:

1. providing a homogeneous information space for a choreography by resolving
terminological mismatches between the choreography interfaces of partici-
pating Web Services.

2. handle missing information with regard to information compatibility. This
means if some information is missing in Ωin, Ωout, or Ωshared in (ci(S)) of
a Web Service participating in a choreography, this needs to be added by
additional interaction with the owner of the Web Service



Title Suppressed Due to Excessive Length 7

3. establish a communication compatibility if this is not given a priori. There-
fore, protocol related aspects need to be handled (i.e. if ci(Sx) wants to
send A and B in state ωn but ci(Sy) expects A in ωn and B in ωn+1), as
well as business process aspects (i.e. if common states between participating
Web Services can only be reached by modifying the business process of the
choreography).

The first aspect relates to data level mediation, wherefore a WW Mediator
can use respective OO Mediators [14]. The third aspects correlates to the process
mediation approach followed in WSMX [6].

4 Service Orchestration

The W3C Glossary defines an orchestration as ”the sequence and conditions in
which one Web service invokes other Web services in order to realize some useful
function. That is, an orchestration is the pattern of interactions that a Web
service agent must follow in order to achieve its goal.” [8]. In accordance to this,
an orchestration in WSMO is defined as a service interface that describes how a
Web Services aggregates other Web Services into its functionality.

The following explains orchestration definitions on basis of the common
model for WSMO service interfaces, and denotes the support for determining
validity of service orchestrations as the main reasoning tasks along with emerg-
ing mediation needs.

4.1 Orchestration Descriptions

With respect to the afore examinations, an orchestration defines a decomposition
of the capability of a Web Services and how these subtasks can be achieved
by using other Web Services. Thereby, only those subtasks of a Web Service
functionality are defined in the orchestration O(S) that are realized by other
services; the service functionality can be realized either without using any other
Web Service, only by aggregating other Web Services, or as hybrid realizations
that combine the former realization types.

An orchestration O(S) = aggregation((S1), ..., (Sn)) defines the control and
data flow for aggregating Web Services (S1), ..., (Sn) so that the functionality of S
is achieved; thereby, S consumes the aggregated Web Services via their respective
choreography interface ci(S1), ..., ci(Sn). We assume that a specific functional-
ity required in a state ωO(S) may only be a part of the functionality provided
by an aggregated service. Hence, we introduce the concept of an operation for
describing the interaction between services for consuming partial functionalities
within an orchestration. An operation op(service, update) denotes the interact-
ing services and the communicative activities performed; the latter is expressed
in terms of a choreography description. In consequence, an orchestration descrip-
tion consists of the vocabulary ΩO(S) that denotes the information space of the
orchestration from the perspective of the orchestrating Web Service S, guarded



8 Michael Stollberg

transition TO(S) of the form IF condition(ωO(S)) THEN op(Starget, update), and
the states ωx(O(S)) that can be reached by TO(S).

Let’s consider an example for clarification: a Web Service ’VTA’ orchestrates
a flight booking service S1 and a hotel booking service S2: the first state in OV TA
is to retrieve information for suitable flights from S1, the second one retrieval
of available hotel rooms from S2 with respect to the flight dates; in the third
state, VTA books the flight and the hotel accordingly. Here, we consume S1, S2

completely, but not subsequently. This is what we want to and can be expressed
in an orchestration definition on basis of the common model for WSMO service
interface descriptions as outlined above. This does not support the dynamic
creation of an orchestration, i.e. discovering the services to be aggregated and
determine the business process of the orchestration, but it allows to validate
orchestrations.

4.2 Validation of Orchestrations

Validity of an orchestration O(S) = aggregation((S1), ..., (Sn)) is given if the
interactions with the aggregated services can be performed successfully. This
means that the operations defined in O(S) need to be compliant with the chore-
ography interfaces ci(S1), ..., ci(Sn) of the aggregated Web Services, so that the
functionalities expected by the orchestration can be provided.

For determining validity of an orchestration, we assume the following: (1)
the choreography interface of a Web Service is first static, i.e. it can not be
changed, and (2) the functionality of a Web Service consumable via its chore-
ography interface needs to be consumed completely, i.e. we can not just utilize
a part of a service functionality. In consequence, we need to determine for all
services aggregated in an orchestration whether this service is consumed cor-
rectly and completely. Thus, for each service aggregated in O(S), the set of all
operations op(Starget, update) with a specific service provides a valid client for
the choreography interface ci(Starget). This can be determined by testing service
compatibility as described above between (op(Starget, update), ci(Starget)).

Hence, we can apply the same approach for determining validity of an or-
chestration and for existence of a valid choreography between Web Services. In
consequence, also the requirements for WW Mediators for resolving mismatches
within an orchestration are the same that we have determined for WW Mediators
in choreographies above.

5 Related Work

The main merit of the common model for describing service interfaces in WSMO
is the extensive support for ontologies as the underlying data model. This is a
basic requirement for enabling Semantic Web Services, which is not supported
by any existing language related to Web Service choreography or orchestration
description: WSDL [4] allows to describe consumption interfaces of Web Ser-
vices along with operations for XML data interchange; WS-CDL [9] provides



Title Suppressed Due to Excessive Length 9

a language for describing choreographies as global interaction protocols with-
out alignment to choreography interface description languages; BPEL4WS [17]
provides an orchestration language in alignment with WSDL, thus only sup-
ports XML data interchange. Although the process model of OWL-S follows the
same intention of describing both the client-service interaction for consuming a
Web Service and the aggregation of Web Services [16], the distinction between
choreography and orchestration is not explicitly defined. Also, the process rep-
resentation language seems not to de adequate with respect to sophisticated
reasoning support and is not based on any formal model (although semantics
have been provided using Petri-Nets [11]).

Regarding service compatibility as the essential reasoning tasks on service
interface descriptions, an initial approach has been presented in [5]. Therein,
a formal model on basis of process algebras is defined for WSCI, an extension
of WSDL that allows defining the communication process of a Web Service
interface. Following the same approach, [10] defines a formal approach for service
compatibility on basis of Petri Nets, that we apply and extend with respect to
the WSMO description model for service interfaces.

Approaches for dynamic composition as presented in [18], [1], we regard these
as compatible efforts to enable the ultimate goal of Semantic Web Services: given
a goal to be satisfied, existing Web Services are dynamically composed in a way
that they can solve the goal as a higher-level functionality. Nevertheless, the need
for the essential reasoning tasks on choreography and orchestration descriptions
are also relevant for such composition techniques in order to ensure consistency
and interoperability of service compositions.

6 Conclusions

In this paper we have discussed the usability of the basic model for describing
service interfaces in WSMO, and determined the essential reasoning tasks for
choreography and orchestration.

The WSMO approach for formal service interface descriptions can be under-
stood as an ontology that evolves with respect to the information interchange in
service consumption or interaction. Such exhaustive support for ontologies as the
underlying data model for service usage is a main drawback of existing descrip-
tion languages for choreography and orchestration. As a specialization of existing
terminology, we have shown that choreography is concerned with the commu-
nication in interactions, while orchestration extends choreography descriptions
with notions for control and data flow. The main reasoning task on both types
of service interfaces is service compatibility what allows determining a priori
whether Web Services are interoperable; the realization of this is supported by
the WSMO model for service interface descriptions.

Concluding, we remark that we consider a choreography interface description
as mandatory for Web Services in order to be consumable, while an orchestration
is optional in the sense that not every Web Services necessarily needs to define
an orchestration in order to achieve its functionality.



10 Michael Stollberg

References

1. Albert, P.; Henocque, L.; Kleiner, M.: A Constrained Object Model for Configuration
Based Workflow Composition. Submitted to the 1st International Workshop on Web
Service Choreography and Orchestration for Business Process Management, to be
held at the BPM 2005, Nancy, France, September 2005.

2. Austin, D.; Barbir, A.; Peters, E.; Ross-Talbot, S.: Web Services Choreography Re-
quirements. W3C Working Draft 11 March 2004.

3. Boerger, E. and Staerk, R.F: Abstract State Machines. A Method for High-Level
System Design and Analysis . Berlin, Heidelberg: Springer 2003.

4. Booth, D.; Liu C. K. (Eds): Web Services Description Language (WSDL) Version
2.0 Part 0: Primer. W3C Working Draft 21 December 2004.

5. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing Web Service Chore-
ographies. In Proceedings of First International Workshop on Web Services and
Formal Methods, Pisa, Italy, February 2004.

6. Cimpian, E. and Mocan, A.: WSMX Process Mediation Based on Choreographies. In
the 1st International Workshop on Web Service Choreography and Orchestration for
Business Process Management at 3rd International Conference on Business Process
Management (BPM 2005), Nancy, France, September 2005.

7. Eck, P.A.T. van, Engelfriet, J., Fensel, D., Harmelen, F. van, Venema, Y. and Wil-
lems, M: A Survey of Languages for Specifying Dynamics: A Knowledge Engineering
Perspective. In IEEE Transactions of Knowledge and Data Engineering, 13(3) 2001;
pp. 462-496.

8. Haas, H., Brown, A.: Web Services Glossary. W3C Working Group Note 11 February
2004.

9. Kavantzas, N.; Burdett, D.; Ritzinger, G.; Fletcher, T.; Lafon, Y.: Web Services
Choreography Description Language Version 1.0. W3C Working Draft 17 December
2004.

10. Martens, A.: On Compatibility of Web Services. Petri Net Newletter (65), 2003;
12-20.

11. Narayanan, S., McIlraith A., S.: Simulation, Verification and Automated Compo-
sition of Web Services. In proceedings of the Eleventh International World Wide
Web Conference (WWW-11), May, 2002.

12. Preist, C.: A Conceptual Architecture for Semantic Web Services. In Proceedings
of the 3rd International Semantic Web Conference (ISWC 2004), 2004, pp. 395 -
409.

13. Roman, D., Scicluna, J., Feier, C.: (eds.): Ontology-based Choreography and Or-
chestration of WSMO Services. WSMO Working Draft D14, 1 March 2005.

14. Scharffe, F. (Ed.): WSMO Mediators. WSMO Working Draft D29, 11 March 2005.
15. Shanahan, M.: The Frame Problem. In Stanford Encyclopedia of Philosophy, 2004;

available at: http://plato.stanford.edu/entries/frame-problem/.
16. The OWL-S Coalition: OWL-S 1.1 Release, November 2004;

www.daml.org/services/owl-s/1.1/.
17. Thatte, S. (ed.): Business Process Execution Language for Web Services Version

1.1, Specification 05 May 2003.
18. Traverso, P., Pistore M.: Automated Composition of Semantic Web Services into

Executable Processes. In Proceedings of the 3rd International Semantic Web Con-
ference (ISWC 2004), 2004.


